104 research outputs found

    Low power, compact charge coupled device signal processing system

    Get PDF
    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated

    Programming Protocol-Independent Packet Processors

    Full text link
    P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label

    Fluorescence spectroscopy for identification of atherosclerotic tissue

    Get PDF
    Objective: Vessel perforation and limited steerability of the laser light are the major limitations of laser angioplasty. To improve steerability fluoresence spectroscopy has been proposed for identification of atherosclerotic plaques. The aim was to investigate this. Methods: Fluorescence spectroscopy with three different excitation wavelengths (325 nm, 380 nm, 450 nm) was tested in an emission range of 400 nm to 600 nm. Intensity ratios at 480/420 nm were determined in different types of blood vessels. Necropsy material from 40 patients (punch biopsies of 4 mm diameter from the coronary and carotid artery as well as from the ascending and descending aorta) was studied spectroscopically. Histological alterations of the vessel wall were assessed by a semiquantitative score (0 to 10 points): (a) normal tissue, 0 to 2 points (mean=0.25; n=38); (b) mild atherosclerotic lesions, 3 to 5 points (mean=3.35; n=39); (c) severe atherosclerotic lesions, β‰₯ 6 points (mean=6.75; n=43). Results: Best spectroscopic results were obtained with an excitation wavelength of 325 nm. In samples with severe atherosclerotic lesions the fluoresence spectra showed a significant reduction of the emitted wavelength intensities when compared to normal tissue. There was a clear separation of the fluorescence spectra between normal and mild as well as between normal and severe atherosclerotic lesions; normal tissue showed an increased intensity in the range from 420 nm to 540 nm, whereas atherosclerotic lesions had no or only a small peak at 480 nm. There was a significant correlation between the semiquantitative score (n=120) and the fluorescence ratio at 480/420 nm (excitation wavelength 325 nm) with a correlation coefficient of 0.87. The spectroscopic results showed no differences between the samples taken from different types of vessels. Conclusions: Fluorescence spectroscopy allows a reliable identification of normal and atherosclerotic lesions. The close correlation between the emitted light intensity ratio at 480/420 nm and the histological alterations of the vessel wall suggests a relationship between vessel wall fluorescence and the atherosclerotic alterations of the wal

    Fluorescence spectroscopy for identification of atherosclerotic tissue

    Full text link
    Objective: Vessel perforation and limited steerability of the laser light are the major limitations of laser angioplasty. To improve steerability fluoresence spectroscopy has been proposed for identification of atherosclerotic plaques. The aim was to investigate this. Methods: Fluorescence spectroscopy with three different excitation wavelengths (325 nm, 380 nm, 450 nm) was tested in an emission range of 400 nm to 600 nm. Intensity ratios at 480/420 nm were determined in different types of blood vessels. Necropsy material from 40 patients (punch biopsies of 4 mm diameter from the coronary and carotid artery as well as from the ascending and descending aorta) was studied spectroscopically. Histological alterations of the vessel wall were assessed by a semiquantitative score (0 to 10 points): (a) normal tissue, 0 to 2 points (mean=0.25; n=38); (b) mild atherosclerotic lesions, 3 to 5 points (mean=3.35; n=39); (c) severe atherosclerotic lesions, β‰₯ 6 points (mean=6.75; n=43). Results: Best spectroscopic results were obtained with an excitation wavelength of 325 nm. In samples with severe atherosclerotic lesions the fluoresence spectra showed a significant reduction of the emitted wavelength intensities when compared to normal tissue. There was a clear separation of the fluorescence spectra between normal and mild as well as between normal and severe atherosclerotic lesions; normal tissue showed an increased intensity in the range from 420 nm to 540 nm, whereas atherosclerotic lesions had no or only a small peak at 480 nm. There was a significant correlation between the semiquantitative score (n=120) and the fluorescence ratio at 480/420 nm (excitation wavelength 325 nm) with a correlation coefficient of 0.87. The spectroscopic results showed no differences between the samples taken from different types of vessels. Conclusions: Fluorescence spectroscopy allows a reliable identification of normal and atherosclerotic lesions. The close correlation between the emitted light intensity ratio at 480/420 nm and the histological alterations of the vessel wall suggests a relationship between vessel wall fluorescence and the atherosclerotic alterations of the wal

    Efficient unfolding pattern recognition in single molecule force spectroscopy data

    Get PDF
    BackgroundSingle-molecule force spectroscopy (SMFS) is a technique that measures the force necessary to unfold a protein. SMFS experiments generate Force-Distance (F-D) curves. A statistical analysis of a set of F-D curves reveals different unfolding pathways. Information on protein structure, conformation, functional states, and inter- and intra-molecular interactions can be derived.ResultsIn the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets from SMFS experiments on the membrane protein bacterioRhodopsin (bR). We discuss the unfolding pathways found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other secondary structural element. The algorithm is capable of detecting side peaks along with main peaks.Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their occurrences and co-occurrences special to bR\u27s unfolding pathway. We find that side peaks do not co-occur with one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases.ConclusionsOur algorithm satisfies the requirements of an automated methodology that combines high accuracy with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading to more consistent and reproducible results

    Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    Get PDF
    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of \u3b1-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels

    The Glycan Shield of HIV Is Predominantly Oligomannose Independently of Production System or Viral Clade

    Get PDF
    The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric gp120 (∼30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (∼98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120

    Agent-Based Modeling of Endotoxin-Induced Acute Inflammatory Response in Human Blood Leukocytes

    Get PDF
    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions.An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades.The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system

    Discovery and Development of Toll-Like Receptor 4 (TLR4) Antagonists: A New Paradigm for Treating Sepsis and Other Diseases

    Get PDF
    Abstract. Sepsis remains the most common cause of death in intensive care units in the USA, with a current estimate of at least 750,000 cases per year, and 215,000 deaths annually. Despite extensive research still we do not quite understand the cellular and molecular mechanisms that are involved in triggering and propagation of septic injury. Endotoxin (lipopolysaccharide from Gram-negative bacteria, or LPS) has been implicated as a major cause of this syndrome. Inflammatory shock as a consequence of LPS release remains a serious clinical concern. In humans, inflammatory responses to LPS result in the release of cytokines and other cell mediators from monocytes and macrophages, which can cause fever, shock, organ failure and death. A number of different approaches have been investigated to try to treat and/or prevent the septic shock associated with infections caused by Gram-negative bacteria, including blockage of one or more of the cytokines induced by LPS. Recently several novel amphipathic compounds have been developed as direct LPS antagonists at the LPS receptor, TLR4. This review article will outline the current knowledge on the TLR4-LPS synthesis and discuss the signaling, in vitro pre-clinical and in vivo clinical evaluation of TLR4 antagonists and their potential use in sepsis and a variety of diseases such as atherosclerosis as well as hepatic and renal malfunction. KEY WORDS: drug discovery; LPS; sepsis; toll-like receptor antagonists
    • …
    corecore